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Abstract 

 

 The primary goal of this work is to study the efficacy of dielectric barrier discharge (DBD) 

technology for deactivating airborne micro-organisms. E. coli nebulised in air was exposed to the 

DBD and the bacterial sample collected from air was analyzed in detail. Reculturing of the 

collected bacteria showed deactivation of E. coli.  In order to understand the mechanisms of 

bacterial deactivation, the bacterial samples collected from air in the vicinity of the DBD were 

analysed for surface chemical change and morphological change upon DBD treatment. Scanning 

electron microscopy imaging of the E. coli shows that the bacteria undergoes physical distortion 

to varying degrees from formation of pores to severe structural distortion. Fourier transform 

infrared spectroscopy analysis showed that the bacteria underwent severe oxidation resulting in 
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formation of hydroxyl groups and carbonyl groups and a significant reduction of amine 

functionalities and phosphate groups. High resolution N1s core level photoemission 

spectroscopic measurements confirmed the presence of oxide peak and a decrease in the peak 

intensity of the protonated amine compared to untreated E.coli suggest oxidation of the outer 

layer of the cell wall.   

*Corresponding author email: ramprasad.gandhiraman@nasa.gov  Ph: +1 650 604 4702 
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Introduction 

Nosocomial infections have become a worldwide public health concern, resulting in prolonged 

hospitalisation of patients, increased human suffering and spiraling healthcare costs. Recent 

estimates place the annual cost of nosocomial infections at over $45 billion every year to the 

U.S. healthcare system alone.1 Decontamination of air is an important area of research with 

significant impact on several environments including hospitals, long duration space flights and 

other enclosed areas that are prone for microbial contamination.2 Ross et. al. analyzed air 

samples from the homes of 44 asthmatic individuals and concluded that increased concentrations 

of gram negative bacteria present in the air increased the severity of asthma.3  The most 

commonly used technologies for air cleaning include high efficiency particulate air filters, UV 

irradiation, chemicals (spray, gel), steam (autoclave), and gas spray (ozone, hydrogen 

peroxide).4-11 These methods, while popular, often provide sub-optimal outcomes such as 

creating bacterial resistance, developing mutagenic outcomes if bacteria are under-exposed and 

are responsible for numerous health hazards when operated incorrectly (for example, radiation 

exposure in the case of UV). Prolonged exposure to radiation could cause skin irritation in 

operators, patients and staff.12,13  

Air filters depend on the mechanical filtration of airborne particles and their drawback is that the 

contaminated air has to pass through the filter, trapping clusters of bacteria but consequently 

causing a localized bio-hazard for the maintenance staff. Standard HEPA filtration may also 

allow individual bacteria to pass through its porous surface once the original clusters have 

desiccated, and is unable to arrest the transit of smaller pathogenic organisms such as viruses. 

Another problem with traditional air filtration is that there is a significant drop in air pressure 

across the filter medium, increasing the cost of continuous operation over their life cycle and 
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requiring filter replacement on a frequent basis.  UV irradiation for air disinfection comes in 

several forms, including full intensity irradiation of room with no occupants in it and shielded 

UV irradiation which is done with no restriction to human occupation.14 One of the biggest 

drawbacks of UV irradiation is that it requires direct ‘line of sight’ exposure for it to be effective, 

and ‘shadowing’ may occur when used to treat airborne bacteria, a process whereby the exposed 

upper layers of a bacterial cluster are deactivated while providing a protective shield for the 

bacteria below them, particularly those that form biofilms.15	
  While the above technologies are 

often used on their own, they may be combined; for example, a combination of high efficiency 

particulate air filters with UV irradiation was shown to be effective in reducing 60% of the bio-

aerosols in a contaminated room.16   Pal et. al., reported titanium dioxide nanoparticle mediated 

photocatalytic inactivation of airborne E. coli in a continuous flow reactor,17,18 and fluorescent 

light inactivation of gram negative and gram positive bacteria.19 Kowalski et. al. reported killing 

E.coli in 10-480 seconds using high concentrations of ozone (300-631 ppm).20  

In recent years, cold atmospheric pressure plasmas have gained significant recognition in the 

field of healthcare, for example in the treatment of living cells, sterilization, wound healing and 

blood coagulation21. The plasmas are nontoxic, provide rapid and continuous anti-bacterial 

treatment, leave no residues to clean up and are easy to scale up, compared to other approaches. 

The dielectric barrier discharge (DBD) based air decontamination method requires the air and 

biomolecules to pass in close proximity to the discharge source and several synergistic 

decontamination mechanisms are believed to increase the overall decontamination efficacy22-25. 

Here, we present a DBD based air decontamination technology using a novel electrode for 

generating the discharge. The study aims to explore the efficacy of DBD technology for 

deactivating airborne micro-organisms and assess the effects of the atmospheric pressure plasma 
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specifically on E. coli micro-organisms. In order to understand the mechanisms of bacterial 

deactivation it is necessary to examine the bacterial surface chemical and topographical change 

upon plasma treatment. Topographical features have been observed here using scanning electron 

microscopy (SEM). Understanding the relation of surface chemical change to cell death is crucial 

and therefore, a detailed analysis of the chemical changes to the proteins, lypopolysaccharides 

and the outer cell wall of the E. coli upon exposure to DBD has been carried out using fourier 

transform infrared spectroscopy (FTIR) and x ray photoelectron spectroscopy (XPS).  

E. coli bacteria was chosen as a representative organism for this study because of its prevalence 

in many human occupied spaces, its rod-like structure makes it easier to see morphological 

surface changes and its propensity to cause infectious diseases; including wound infections, 

neonatal meningitis, inflammation of abdominal wall, bacteria and pneumonia.  

Methods 

Materials: 

Escherichia coli (Migula) Castellani and Chalmers (ATCC 25922) was rehydrated in 1 ml of 

Tryptic soy Broth (BD 211825). The aliquot was aseptically transferred into a tube containing 5 

ml of Tryptic Soy Broth and incubated overnight with shaking at 37℃. The bacterial suspension 

was then centrifuged at 1000 rpm for 10 minutes, the supernatant was discarded and the cells 

were washed down four times with distilled water. The cell culture was transferred to a tube and 

vortexed to re-suspend the bacterial cell pellet in distilled water. 

Experimental Setup: 
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A commercially available plasma based air decontamination system (NV200, Novaerus Inc.) was 

used. The DBD electrode consists of two coaxial cylindrical mesh coils (304 stainless steel, 0.2 

mm diameter wire) separated by a dielectric, borosilicate glass tube (Fig. 1). The glass tube has 

the following dimensions: 80 mm length, 22.5 mm internal diameter, and 28 mm outer diameter. 

A high alternating voltage, 4 kV, is applied to the coils via a step-up transformer. A fan inside 

the NV200 unit is used to draw the air containing bioaerosol into the unit. The DBD tool was 

placed inside a Bio-Safety Cabinet (Nuaire, Class II, Type A2, Model NU-425-400) and a 

compressor nebulizer (OMROM Compressor nebulizer model NE-C29-E) was attached to the 

input of the system in order to aerosolize the bacterial particles for testing. All vents located on 

the system were sealed and a platform was placed over the top of the system to ensure the 

aerosolized particles had a direct route through the system. The bacterial suspension containing 

E.coli and distilled water of quantity 1 ml was transferred to the OMROM compressor nebulizer. 

The aerosolized particles were fed through the input and any viable particles were collected at 

the output in Tryptic Soy Agar plates (BD 236950). The agar plates were left in front of the 

output of the DBD NV200 tool and were replaced every minute for 5 minutes. The agar plates 

were incubated overnight at 37℃ and after the incubation, colony forming units were observed 

on the plates as shown in figure 2a. In another set of experiment, the agar plates were placed 

continuously for 1 to 5 minutes and the colony forming unit counts upon reculture is shown in 

figure 2b. Two different sized petri dishes 100 mm diameter and 60 mm diameter were used. For 

the experiment in Figure 2a, 100 mm diameter petri dishes were used with both the fan and 

electrodes turned ON and OFF simultaneously. For the experiment in Figure 2b, 60 mm diameter 

petri dishes were used with plasma ON and OFF, while having the fan ON for both the cases. 

There is no scientific reason for the use of different sized petri dishes. The concentration of E. 
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coli in each plate was calculated using the following formula: bacteria/ml= number of colonies x 

dilution of sample.  

Characterization: 

For SEM imaging, bacterial cells on silicon wafer were fixed in a solution of 2.5% 

Glutaraldehyde (Sigma-Aldrich) in Phosphate Buffered Saline (ATCC) for 2 hours and as a 

second fixative procedure, in a 2% Osmium Tetroxide (Ted Pella, Inc.) in PBS for 1.5 hours. The 

samples were then dehydrated in gradually increasing concentrations of ethanol from 60% to 

100% in deionized water and chemically dried using Hexamethyldisilazane (Sigma-Aldrich) for 

5 minutes. In order to preserve the samples from reacting with water from humidity, they were 

placed in a vacuum desiccator overnight.  SEM imaging was performed using S4800 scanning 

electron microscope (Hitachi, Pleasanton, CA). 

FTIR measurements were carried out using a Perkin Elmer Spectrum GX system. As the 

transmission mode measurement was carried out, single side polished silicon wafers were used 

as substrates. An untreated silicon substrate was used as a background substrate for the 

measurement. Each measurement was an average of 200 scans.  

The N1s core level x ray photo emission spectroscopy (XPS) measurements were performed on 

beamline 10-1 (bending magnet endstation, spherical grating monochromator) at the Stanford 

Synchrotron Radiation Lightsource (SSRL).26 A gold grid in the beam path upstream of the 

chamber was used for normalization of the incoming flux. The samples were mounted on an 

aluminum stick with carbon tape and all the measurements were done under UHV conditions (< 

1x10-8 torr) in a generic XPS chamber. Peak fitting was performed using Casa XPS using Shirley 

background and Gaussian-Lorentzian distribution. For XPS measurements, the bacterial samples 
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collected on silicon wafer were freeze dried using Labconco’s FreeZone 4.5 Liter Freeze Dry 

Systems. 

Results 

Figure 1 shows the (a) Schematic of the NV200 DBD system, (b) diagram of the assembled coil, 

(c) cross section illustrating the air flow around the dielectric barrier discharge, (d) the coil parts, 

and (e) the experimental setup for airborne inactivation of E. coli and sample collection. The bio-

aerosol containing nebulized E. coli was directed at the top of the DBD tool which has an 

internal fan that sucks the contaminated air towards the DBD placed inside the tool. The 

decontaminated air passes out of the bottom outlet. The deactivated bacteria was collected near 

the bottom outlet in a silicon wafer and agar plates for characterization and re-culturing 

respectively. The purpose of a partial shield between the nebulizer and the bottom outlet in the 

DBD tool is to prevent direct settlement of bacteria on to the silicon wafer and the culture plate. 

The DBD design shown in Figure 1 (right) contains metal electrodes separated by a dielectric.  

Figure 2 shows the reduction numbers of nebulized e.coli exposed to DBD. E.coli exposed to 

DBD was collected, re-cultured and counted. Comparison of the e.coli counts with samples 

collected in DBD OFF state shows a clear reduction of air borne e.coli exposed to DBD. Figure 2 

shows two plots (Left) both fan and electrode were either ON and OFF together and (Right) fan 

was ON throughout the experiment and the electrode was turned ON and OFF independently. In 

both the cases, the DBD ON results in deactivation of the airborne E. coli. The difference in the 

E. coli counts between the left and right is due to the difference in the surface area made 

available for collection of the air borne microbes i.e. the difference in petri dish size between the 

experiments. 
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Figure 3 shows a photograph of captured E. coli in DBD OFF and DBD ON states displaying the 

deactivation of air borne E. coli. Figure 4 shows SEM images of the samples at various stages. 

The nebulized E. coli was exposed to DBD and collected from air on a silicon wafer. Upon 

fixing of the microbes using the procedure described in the experimental section earlier, SEM 

imaging was carried out on several sets of samples to study the effect of DBD on the airborne 

bacteria. Untreated E. coli is smooth with intact surface and the DBD-treated bacteria are rough 

with holes. The DBD alters the topographical features of E. coli to a significant extent ranging 

from formation of big holes to severe structural deformation resulting in cell death. Physical 

distortion to the bacterial cell wall happens to varying degrees. It is hypothesized that the degree 

of distortion depends on the proximity of the bacteria to the electric field and the plasma 

discharge source.  Formation of holes and structural deformation of sterilized e-coli similar to 

our observation has been reported by others using techniques such as biocide emusions27 and 

photocatalysis.28 

The FTIR data for the untreated and DBD-treated E.coli are shown in figure 5. The peak 

attributions are made based on the vast FTIR spectroscopy literature on intact and damaged 

bacterial cells.29-34The broad asymmetric absorption peak between 3000 and 3500 cm-1 

comprises of multiple bands. Though the peaks were not distinctly resolved, the asymmetric 

peak shape indicates multiple components. The characteristic peaks at 3305 and 3066 cm−1 are 

assigned to amide I and amide II, respectively. A shoulder peak observed around 1730 cm-1 

corresponds to C=O stretching vibrations of ester functional groups probably from the lipids and 

fatty acids. The vibration bands centered around 1653 cm-1 and 1550 cm-1 correspond to amide 

vibrations associated with proteins.  The amide I band centered around 1653 cm-1 can be 

resolved into three separate peaks at 1636 cm-1, 1655 cm-1 and 1687 cm-1. The 1655 cm-1 peak is 
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attributed to C=O stretching vibration of amides in the α helical content of the protein, 1636 cm-1 

correspond to β sheets and 1687 cm-1 is related to antiparallel β sheets and aggregated strands.35-

37 The amide II band centered around 1550 cm-1 band is attributed to N-H deformation of amides 

associated with proteins including contributions from the C-N stretching vibrations of the peptide 

group. The absorption peaks between 2800 and 3000 cm-1 correspond to the stretching vibrations 

of alkyl groups (CH2 and CH3) present in the bacterial cell wall fatty acids.  The peaks at 2960 

cm-1 and 2923 cm-1 correspond to asymmetric stretching vibration of CH3 and CH2 and 2870 cm-

1 and 2851 cm-1 correspond to symmetric stretching vibration of CH3 and CH2 respectively. The 

peaks at 1460 and 1394 cm-1 correspond to CH3 and CH2 asymmetric and symmetric 

deformation of proteins. The presence of a band at 1402 cm-1 has been attributed to the C-O 

stretching vibration of carboxylic groups.38 The peak at 1240 cm-1 is due to the P=O asymmetric 

stretching mode of the phospholipid phosphodiester backbone of nucleic acids DNA and RNA.39 

The region between 1000 and 1100 cm-1 with peaks centered around 1040 and 1100 cm-1 has 

multiple components corresponding to the C-O-C and C-O-P stretching of diverse 

polysaccharides groups and P=O symmetric stretching overlapping with the vibrations of the 

sugar rings of lipopolysaccharides. The peak at 1033 cm-1 is attributed to C-OH of 

phosphorylated proteins and associated alcohols.  We are not certain about the new intense peak 

centered around 1850 cm-1 in the DBD treated E. coli. The carbonyl C=O stretching vibrations of 

esters and carboxylic groups from lipids and fatty acids, in general,  appear around 1740 cm-1. As 

we did not find any literature for attributing the 1850 and 1975 cm-1 vibrational bands, these 

peaks are left unassigned.  Appearance of a new band around 930 cm-1 in the DBD treated E. coli 

is due to the formation of OH species caused by oxidation. An adjacent peak around 956 cm-1 is 

attributed to asymmetric stretching vibration of O-P-O functionalities. 
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Figure 6 shows the N1s core level x ray photoemission spectrum (high resolution scan) of 

untreated and DBD treated E. coli. The N1s peak of untreated E. coli can be resolved in to two 

components and that of DBD treated E. coli can be resolved in to three components. The major 

peak at 399.8 eV is due to non-protonated nitrogen as in amines and amides. The low intensity 

peak at 401.4 eV is due to protonated amines which are likely from the basic amino acid 

sequence.40-43 

Discussion 

DBD based inactivation of the air borne E. coli as observed in figures 2 and 3 can be caused by 

multiple factors. The possible contributions arising from topographical and chemical changes are 

discussed in detail below. The gram negative bacteria contain cytoplasmic membrane, 

peptidoglycan layer and outer membrane.  The ability of the cell to withstand high internal 

osmotic pressure and the maintenance of the cell shape is due to peptidoglycan layer that consists 

of amino sugars and amino acids.44,45 The outer membrane contains structural proteins, receptor 

molecules and phospholipids and acts as a selective permeability barrier containing hydrophilic 

diffusion channels.46-49 It has been reported that the change in permeability of the membrane 

during the inactivation process results in leakage of Potassium ion (K+), a vital component 

involved in protein synthesis and essential for cell viability.50,51  Formation of pores, as observed 

in the SEM images, is more likely to have caused potassium ion leak resulting in cell death. The 

structural deformation suggests extensive chemical degradation of the microbe through the 

action of the charged species generated by DBD.  

The role of hydroxyl radicals and reactive oxygen species in E.coli inactivation has been studied 

by several research groups.52,53 The extents of this molecular damage were assessed using 
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infrared spectroscopy by observing the major chemical components such as C=O and N-H 

vibrations of amides associated with proteins, C=O vibrations of esters from lipids, CH 

vibrations of the bacterial cell walls, P=O vibrations of the phosphodiester of nucleic acids and 

the C-O-C vibrations of polysaccharides.29  The formation of free and hydrogen bonded hydroxyl 

groups in the decontaminated E.coli has been observed  here. 

Exposure of the nebulized bacteria in air to DBD resulted in a significant change in chemical 

structure.  Significant reduction in the intensity of broad stretching vibrations of amine between 

3000 to 3500cm-1 and the formation of hydrogen bonded and free hydroxyl groups between 3500 

to 4000 cm-1 is very evident. A broad shoulder peak centered around 3850 cm-1 and an intense 

peak centered around 3665 cm-1 correspond to O-H functionalities. The C=O stretching vibration 

and N-H deformation of amides associated with proteins in the range of 1655 and 1550 cm-1 

show a very clear variation. An enormous increase in the intensity of the peak centered around 

1100 cm-1 could be attributed to oxidation of P=O, C-O-C and C-O-P groups of 

lipopolysaccharides and other structural proteins and receptor molecules present in the outer 

layer. In the DBD treated E. coli, appearance of a new band caused by oxidation has been 

observed at around 930 cm-1 due to the OH species and an adjacent peak around 956 cm-1 

attributed to asymmetric stretching vibration of O-P-O functionalities. All these observations 

suggest damage to the outer leaflet of the E. coli due to the exposure to DBD. 

In both the untreated and DBD treated E. coli, the N1s core level photoemission spectra confirms 

the presence of non-protonated nitrogen as in amines and amides and protonated amines which 

are likely from the basic amino acid sequence. For the DBD-treated E. coli, an additional peak at 

402.8 eV corresponding to oxidized species is prominent. Also, the peak intensity corresponding 

to the protonated amine in DBD-treated E. coli is decreased compared to that in untreated E. coli. 
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As the probing depth for XPS measurement is about 10 nm, the confirmation of oxide peak in the 

N1s high resolution scan and a decrease in the peak intensity of the protonated amine suggest 

oxidation of the outer layer of the cell wall.   

The inactivation mechanism of the reactive oxygen species is based on its effect on cell 

membrane and intra cellular substances. As hydroxyl groups are permeable to cell membrane, 

the hydroxyl species penetrate the E. coli cell membrane, react with cytoplasmic substances and 

cause chromosomal DNA damage resulting in the deactivation54. This effect is clearly observed 

in figure 5 with the disappearance of one of the amide related peaks and an intense carbonyl peak 

formation.  

Conclusion 

The efficacy of DBD technology for decontamination of air borne microorganisms was tested 

and proved positive. The DBD technology is rapid and the inactivation occurs immediately upon 

an organism transporting through or making contact with the electric field and/or any radicals 

generated by DBD. The short time needed for inactivation of bacterial cells increases the 

usefulness of the plasma in everyday settings such as hospital and workplace environments. The 

effect of DBD on the morphology and surface chemistry of E. coli was studied in order to 

understand the underlying mechanism in the decontamination process. The electromagnetic field 

around the DBD coil causes severe distortion of the morphology of E. coli to varying degrees 

from formation of pores to shrinking and elongation of the cell structure possibly resulting in 

leakage of potassium ion. The oxidation and destruction components of protein, DNA and 

lipopolysaccharides present in the outer leaflet of the cell wall are evident from the FTIR 

spectroscopy and XPS.  
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Figure captions 

 

Figure 1. (a) Schematic of the NV200 DBD system, (b) diagram of the assembled coil, (c) cross 

section illustrating the air flow around the dielectric barrier discharge, (d) the coil parts, and (e ) 

the experimental setup for inactivation E. coli and sample collection   

Figure 2. E. coli counts captured from air in an agar plate and re-cultured. (a) both DBD and fan 

ON, control experiment with both DBD and fan OFF in 100 mm diameter agar plate, (b) DBD 

and fan ON, Control experiment with DBD OFF and Fan ON in 60 mm diameter agar plate. 

Figure 3. Photograph of the E. coli captured from air and re-cultured in a 100 mm diameter petri 

dish containing tryptic soy agar (left) control experiment with DBD OFF (right) DBD ON  

Figure 4. Scanning electron microscopic image of (a,b) untreated E.coli and (c-h) E. coli passed 

through the DBD and captured from air 

Figure 5. FTIR spectroscopy analysis of untreated and DBD-treated E. coli. Peak attribution: 1, 

2  - OH functionalities due to oxidation of hydrocarbons,  3, 6-  Vibrations of Amine 

functionalities  (amine and amide), 4: alkyl CH2 and CH3 vibrations, 5: unknown, 7,8: CH 

vibration, 9:  Phosphate groups present in cell membrane, 10: P=O, C-O-C, C-O-P, 11: OH 

functionality. 

Figure 6. N 1s Core level x ray photoemission spectrum (XPS) of (left) untreated E. coli and 

(right) inactivated E. coli  


